miércoles, 8 de mayo de 2013

FUERZA: LEYES DE NEWTON, EQUILIBRIO TRASLACIONAL Y ROTACIONAL, FRICCIÓN, TRABAJO Y POTENCIA, ENERGÍA POTENCIAL Y CINÉTICA


Las leyes
Primera ley de Newton o Ley de la inercia
La primera ley del movimiento rebate la idea aristotélica de que un cuerpo sólo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que:
Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él.
Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuyo resultante no sea nulo sobre él. Newton toma en cuenta, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como esta a la fricción.
En consecuencia, un cuerpo con movimiento rectilíneo uniforme implica que no existe ninguna fuerza externa neta o, dicho de otra forma; un objeto en movimiento no se detiene de forma natural si no se aplica una fuerza sobre él. En el caso de los cuerpos en reposo, se entiende que su velocidad es cero, por lo que si esta cambia es porque sobre ese cuerpo se ha ejercido una fuerza neta.
La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.
En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, por ejemplo, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial. Lo anterior porque a pesar que la Tierra cuenta con una aceleración traslacional y rotacional estas son del orden de 0.01 m/s^2 y en consecuencia podemos considerar que un sistema de referencia de un observador dentro de la superficie terrestre es un sistema de referencia inercial.
Segunda ley de Newton o Ley de fuerza
La segunda ley del movimiento de Newton dice que:
El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en el momento lineal de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.
En términos matemáticos esta ley se expresa mediante la relación:
\mathbf{F}_{\text{net}} = {\mathrm{d}\mathbf{p} \over \mathrm{d}t}
Donde:
\mathbf{p}es el momento lineal
\mathbf{F}_{\text{net}}la fuerza total o fuerza resultante.
Suponiendo que la masa es constante y que la velocidad es muy inferior a la velocidad de la luz la ecuación anterior se puede reescribir de la siguiente manera:
Sabemos que \mathbf{p}es el momento lineal, que se puede escribir m .V donde m es la masa del cuerpo y V su velocidad.
\mathbf{F}_{\text{net}} = {\mathrm{d}(m\mathbf{v}) \over \mathrm{d}t}
Consideramos a la masa constante y podemos escribir   {\mathrm{d}\mathbf{v} \over \mathrm{d}t}=\mathbf{a}aplicando estas modificaciones a la ecuación anterior:
\mathbf{F} = m\mathbf{a}
La fuerza es el producto de la masa por la aceleración, que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad, distinta para cada cuerpo, es su masa de inercia. Veamos lo siguiente, si despejamos m de la ecuación anterior obtenemos que m es la relación que existe entre \mathbf{F}y \mathbf{a}. Es decir la relación que hay entre la fuerza aplicada al cuerpo y la aceleración obtenida. Cuando un cuerpo tiene una gran resistencia a cambiar su aceleración (una gran masa) se dice que tiene mucha inercia. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.
Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.
De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.
La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).
Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con una resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.
Tercera ley de Newton o Ley de acción y reacción
Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.
La tercera ley de Newton es completamente original (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.8 Expone que por cada fuerza que actúa sobre un cuerpo (empuje), este realiza una fuerza de igual intensidad, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y de dirección, pero con sentido opuesto.
Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".
Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento lineal y del momento angular.




Versión débil de ley de acción y reacción
Como se explicó en la sección anterior ciertos sistemas magnéticos no cumplen el enunciado fuerte de esta ley (tampoco lo hacen las fuerzas eléctricas ejercidas entre una carga puntual y un dipolo). Sin embargo si se relajan algo las condiciones los anteriores sistemas sí cumplirían con otra formulación más débil o relajada de la ley de acción y reacción. En concreto los sistemas descritos que no cumplen la ley en su forma fuerte, si cumplen la ley de acción y reacción en su forma débil:
La acción y la reacción deben ser de la misma magnitud (aunque no necesariamente deben encontrarse sobre la misma línea)
Todas las fuerzas de la mecánica clásica y el electromagnetismo no-relativista cumplen con la formulación débil, si además las fuerzas están sobre la misma línea entonces también cumplen con la formulación fuerte de la tercera ley de Newton.


Un cuerpo se encuentra en equilibrio traslacional cuando la sumatoria de todas las componentes en X es igual a 0 y todas las componentes en Y es igual a 0.

Cuando un cuerpo esta en equilibrio traslacional no tiene fuerza resultante actuando sobre el.


Primera Ley de Equilibrio:
Un cuerpo se encuentra en equilibrio si y sólo si la suma vectorial de las fuerzas que actúna sobre el es igual a 0.

Fx=Ax+Bx+Cx+Dx.......=0
Fy=Ay+By+Cy+Dy.......=0

Una caja de 8 N está suspendida por un alambre de 2 m que forma un ángulo de 45° con la vertical. ¿Cuál es el valor de las fuerzas horizontal y en el alambre para que el cuerpo se mantenga estático?.
Primero se visualiza el problema de la siguiente manera:
http://www.ejemplode.com/images/uploads/image/equilibrio1.jpg
A continuación se elabora su diagrama de cuerpo libre.
http://www.ejemplode.com/images/uploads/image/equilibrio2.jpg
Ahora por medio de la descomposición de los vectores, calculamos la fuerza de cada uno de ellos.
F1x = - F1cos 45°*
F1y = F1sen 45°
F2x = F2cos 0° = F2
F2y = F2sen0°=0
F3x = F3cos90°=0
F3y = - F3sen 90° = - 8 N*
Porque los cuadrantes en los que se localizan son negativos.

Como únicamente conocemos los valores de F3, F2 y la sumatoria debe ser igual a cero en x e y, tenemos lo siguiente:
EFx=F1x+F2x+F3x=0
EFy=F1y+F2y+F3y=0
Por lo tanto tenemos lo siguiente:
EFx=-F1cos 45+F2=0
          F2=F1(0.7071)
EFy=-F1sen45-8N=0
          8N=F1(0.7071)
          F1=8N/0.7071=11.31 N
Para calcular F2, se sustituye F1 de la ecuación siguiente:
F2=F1(0.7071)
F2=11.31(0.7071)=8N



Ejemplo de Equilibrio rotacional y traslacional
Condiciones de equilibrio: Para que un cuerpo se encuentre en equilibrio, se requiere que la sumatoria de todas las fuerzas o torcas que actúan sobre él sea igual a cero. Se dice que todo cuerpo tiene dos tipos de equilibrio, el de traslación y el de rotación.
Traslación: Es aquel que surge en el momento en que todas las fuerzas que actúan sobre el cuerpo se nulifican, o sea, la sumatoria de las mismas sea igual a cero.
EFx = 0
EFy = 0
Rotación: Es aquel que surge en el momento en que todas las torcas que actúan sobre el cuerpo sean nulas, o sea, la sumatoria de las mismas sea igual a cero.
EMx= 0
EMy= 0
Aplicaciones: Se utiliza en todo tipo de instrumentos en los cuales se requiera aplicar una o varias fuerzas o torques para llevar a cabo el equilibrio de un cuerpo. Entre los instrumentos más comunes están la palanca,la balanza romana, la polea, el engrane, etc.
EJEMPLO DE PROBLEMA DE APLICACIÓN:
Una caja de 8 N está suspendida por un alambre de 2 m que forma un ángulo de 45° con la vertical. ¿Cuál es el valor de las fuerzas horizontal y en el alambre para que el cuerpo se mantenga estático?.
Primero se visualiza el problema de la siguiente manera:
http://www.ejemplode.com/images/uploads/image/equilibrio1.jpg
A continuación se elabora su diagrama de cuerpo libre.
http://www.ejemplode.com/images/uploads/image/equilibrio2.jpg
Ahora por medio de la descomposición de los vectores, calculamos la fuerza de cada uno de ellos.
F1x = - F1cos 45°*
F1y = F1sen 45°
F2x = F2cos 0° = F2
F2y = F2sen0°=0
F3x = F3cos90°=0
F3y = - F3sen 90° = - 8 N*
Porque los cuadrantes en los que se localizan son negativos.

Como únicamente conocemos los valores de F3, F2 y la sumatoria debe ser igual a cero en x e y, tenemos lo siguiente:
EFx=F1x+F2x+F3x=0
EFy=F1y+F2y+F3y=0
Por lo tanto tenemos lo siguiente:
EFx=-F1cos 45+F2=0
          F2=F1(0.7071)
EFy=-F1sen45-8N=0
          8N=F1(0.7071)
          F1=8N/0.7071=11.31 N
Para calcular F2, se sustituye F1 de la ecuación siguiente:
F2=F1(0.7071)
F2=11.31(0.7071)=8N

Fricción

Fig. 1 - Fricción estática: no se inicia el movimiento si la fuerza tangencial aplicada T hace que el ángulo sea menor a φ0 (no supera a Fr).
Se define como fuerza de rozamiento o fuerza de fricción, a la fuerza entre dos superficies en contacto, a aquella que se opone al movimiento entre ambas superficies (fuerza de fricción dinámica) o a la fuerza que se opone al inicio del movimiento (fuerza de fricción estática). Se genera debido a las imperfecciones, mayormente microscópicas, entre las superficies en contacto. Estas imperfecciones hacen que la fuerza perpendicular R entre ambas superficies no lo sea perfectamente, si no que forme un ángulo φ con la normalN (el ángulo de rozamiento). Por tanto, la fuerza resultante se compone de la fuerza normal N (perpendicular a las superficies en contacto) y de la fuerza de rozamiento F, paralela a las superficies en contacto.

Rozamiento entre superficies de dos sólidos

En el rozamiento entre cuerpos sólidos se ha observado que son válidos de forma aproximada los siguientes hechos empíricos:
1.     La fuerza de rozamiento tiene dirección paralela a la superficie de apoyo.
2.     El coeficiente de rozamiento depende exclusivamente de la naturaleza de los cuerpos en contacto, así como del estado en que se encuentren sus superficies.
3.     La fuerza máxima de rozamiento es directamente proporcional a la fuerza normal que actúa entre las superficies de contacto.
4.     Para un mismo par de cuerpos (superficies de contacto), el rozamiento es mayor un instante antes de que comience el movimiento que cuando ya ha comenzado (estático Vs. cinético).
El rozamiento puede variar en una medida mucho menor debido a otros factores:
1.     El coeficiente de rozamiento es prácticamente independiente del área de las superficies de contacto.
2.     El coeficiente de rozamiento cinético es prácticamente independiente de la velocidad relativa entre los móviles.
3.     La fuerza de rozamiento puede aumentar ligeramente si los cuerpos llevan mucho tiempo sin moverse uno respecto del otro ya que pueden sufrir atascamiento entre sí.
Algunos autores sintetizan las leyes del comportamiento de la fricción en los siguientes dos postulados básicos:[1]
1.     La resistencia al deslizamiento tangencial entre dos cuerpos es proporcional a la fuerza normal ejercida entre los mismos.
2.     La resistencia al deslizamiento tangencial entre dos cuerpos es independiente de las dimensiones de contacto entre ambos.
La segunda ley puede ilustrarse arrastrando un bloque sobre una superficie plana. La fuerza de arrastre será la misma aunque el bloque descanse sobre la cara ancha o sobre un borde más angosto. Estas leyes fueron establecidas primeramente por Leonardo da Vinci al final del siglo XV, olvidándose después durante largo tiempo; posteriormente fueron redescubiertas por el ingeniero francés Amontons en 1699. Frecuentemente se les denomina también leyes de Amontons.
Trabajo (física)

Trabajo (W)
Trabajo.png
Trabajo realizado por una fuerza constante.
Trabajo (W)
Definición
Producto de la fuerza ejercida sobre un cuerpo por su desplazamiento
Tipo
Magnitud escalar
Unidad SI
Julio (J)
Otras unidades
Kilojulio (kJ)
Kilográmetro (kgm)
En mecánica clásica, el trabajo que realiza una fuerza sobre un cuerpo equivale a la energía necesaria para desplazar este cuerpo.1 El trabajo es una magnitud físicaescalar que se representa con la letra \ W(del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.
Ya que por definición el trabajo es un tránsito de energía,2 nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.
Matemáticamente se expresa como:
W = \mathbf F \cdot \mathbf d = F d \cos\alpha
Donde Fes el módulo de la fuerza, des el desplazamiento y \alphaes el ángulo que forman entre sí el vector fuerza y el vector desplazamiento (véase dibujo).
Cuando el vector fuerza es perpendicular al vector desplazamiento del cuerpo sobre el que se aplica, dicha fuerza no realiza trabajo alguno. Asimismo, si no hay desplazamiento, el trabajo también será nulo.



El trabajo en la Mecánica

https://bits.wikimedia.org/static-1.22wmf1/skins/common/images/magnify-clip.png
Trabajo de una fuerza.
Consideremos una partícula Psobre la que actúa una fuerza F, función de la posición de la partícula en el espacio, esto es F=F(\mathbf r)y sea \mathrm d \mathbf run desplazamiento elemental (infinitesimal) experimentado por la partícula durante un intervalo de tiempo \mathrm d t. Llamamos trabajo elemental, \mathrm d W, de la fuerza \mathbf Fdurante el desplazamiento elemental \mathrm d \mathbf ral producto escalar \ F \cdot \mathrm d \mathbf r; esto es,
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r \,
Si representamos por \mathrm d sla longitud de arco (medido sobre la trayectoria de la partícula) en el desplazamiento elemental, esto es \mathrm d s = |\mathrm d \mathbf r|, entonces el vector tangente a la trayectoria viene dado por \mathbf e_{\text{t}} = \mathrm d \mathbf r / \mathrm d sy podemos escribir la expresión anterior en la forma
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r = 
\mathbf F \cdot \mathbf e_{\text{t}} \mathrm d s =
(F \cos\theta )\mathrm d s = F_{\text{s}} \mathrm d s \,
donde\thetarepresenta el ángulo determinado por los vectores \mathrm d \mathbf Fy \mathbf e_{\text{t}}yF_{\text{s}}es la componente de la fuerza F en la dirección del desplazamiento elemental \mathrm d \mathbf r.
El trabajo realizado por la fuerza \mathbf Fdurante un desplazamiento elemental de la partícula sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa, según que el ángulo \thetasea agudo, recto u obtuso.
Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre dos posiciones A y B puede considerarse como el resultado de sumar infinitos desplazamientos elementales \mathrm d \mathbf ry el trabajo total realizado por la fuerza \mathbf Fen ese desplazamiento será la suma de todos esos trabajos elementales; o sea
W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r \,
Esto es, el trabajo viene dado por la integral curvilínea de \mathbf Fa lo largo de la curva Cque une los dos puntos; en otras palabras, por la circulación de \mathbf Fsobre la curva Centre los puntos A y B. Así pues, el trabajo es una magnitud física escalar que dependerá en general de la trayectoria que una los puntos A y B, a no ser que la fuerza \mathbf Fsea conservativa, en cuyo caso el trabajo resultará ser independiente del camino seguido para ir del punto A al punto B, siendo nulo en una trayectoria cerrada. Así, podemos afirmar que el trabajo no es una variable de estado.
En el caso particular de que la fuerza aplicada a la partícula sea constante (en módulo, dirección3 y sentido4 ), se tiene que
W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r =
\mathbf F \cdot \int_{\text{A}}^{\text{B}} \mathrm d \mathbf r =\mathbf F \cdot \Delta \mathbf r =
F s \cos \theta
es decir, el trabajo realizado por una fuerza constante viene expresado por el producto escalar de la fuerza por el vector desplazamiento total entre la posición inicial y la final.
Si sobre una partícula actúan varias fuerzas y queremos calcular el trabajo total realizado sobre esta ella, entonces  \mathbf F representará al vector resultante de todas las fuerzas aplicadas.
El trabajo en la Termodinámica
En el caso de un sistema termodinámico, el trabajo no es necesariamente de naturaleza puramente mecánica, ya que la energía intercambiada en las interacciones puede ser también calorífica, eléctrica, magnética o química, por lo que no siempre podrá expresarse en la forma de trabajo mecánico.
No obstante, existe una situación particularmente simple e importante en la que el trabajo está asociado a los cambios de volumen que experimenta un sistema (v.g., un fluido contenido en un recinto de forma variable).
Así, si consideramos un fluido que se encuentra sometido a una presión externa p_{\text{ext}}\,y que evoluciona desde un estado caracterizado por un volumen V_1a otro con un volumen V_2, el trabajo realizado será:
W_{12} = \int_{V_1}^{V_2} p_{\text{ext}} \mathrm d V
resultando un trabajo positivo (W > 0) si se trata de una expansión del sistema \mathrm d V > 0y negativo en caso contrario, de acuerdo con el convenio de signos aceptado en la Termodinámica. En un proceso cuasiestático y sin fricción la presión exterior (p_{\text{ext}}) será igual en cada instante a la presión (p) del fluido, de modo que el trabajo intercambiado por el sistema en estos procesos se expresa como
W_{12} = \int_{V_1}^{V_2} p \, \mathrm d V
De estas expresiones se infiere que la presión se comporta como una fuerza generalizada, en tanto que el volumen actúa como un desplazamiento generalizado; la presión y el volumen constituyen una pareja de variables conjugadas.



Potencia (física)
Cantidad de trabajo efectuado por una unidad de tiempo.
Si W es la cantidad de trabajo realizado durante un intervalo de tiempo de duración Δt, la potencia media durante ese intervalo está dada por la relación:
\bar{P} \equiv \left\langle P\right\rangle = \frac{\ W}{\Delta t}
La potencia instantánea es el valor límite de la potencia media cuando el intervalo de tiempo Δt se aproxima a cero:
P(t) = \lim_{\Delta t\rightarrow 0} \frac{\ W}{\Delta t}\ =
\lim_{\Delta t\rightarrow 0} \mathbf{F}\cdot\frac{\Delta\mathbf{r}}{\Delta t} =
\mathbf{F}\cdot \mathbf{v}
Donde
Potencia eléctrica
Artículo principal:Potencia eléctrica.
La potencia eléctrica P desarrollada en un cierto instante por un dispositivo viene dada por la expresión
P(t) = I(t)V(t) \,
Donde:
  • P(t) es la potencia instantánea, medida en vatios (julios/segundos).
  • I(t) es la corriente que circula por él, medida en amperios.
  • V(t) es la diferencia de potencial (caída de voltaje) a través del componente, medida en voltios.
Si el componente es una resistencia, tenemos:
P=I^2 R = \frac{V^2}{R}
Donde:
  • R es la resistencia, medida en ohmios.
Potencia sonora
La potencia del sonido, considerada como la cantidad de energía que transporta la onda sonora por unidad de tiempo a través de una superficie dada, depende de la intensidad de la onda sonora y de la superficie , viniendo dada, en el caso general, por:
P_S=\int_S I_s\ dS
  • Ps es la potencia
  • Is es la intensidad sonora.
  • dS es el elemento de superficie sobre alcanzado por la onda sonora.
Para una fuente aislada, el cálculo de la potencia sonora total emitida requiere que la integral anterior se extienda sobre una superficie cerrada.
Unidades de potencia






Energía potencial

Los carros de una montaña rusa alcanzan su máxima energía potencial gravitacional en la parte más alta del recorrido. Al descender, ésta es convertida en energía cinética, la que llega a ser máxima en el fondo de la trayectoria (y la energía potencial mínima). Luego, al volver a elevarse debido a la inercia del movimiento, el traspaso de energías se invierte. Si se asume una fricción insignificante, la energía total del sistema permanece constante.
En un sistema físico, la energía potencial es la energía que mide la capacidad que tiene dicho sistema para realizar un trabajo en función exclusivamente de su posición o configuración. Puede pensarse como la energía almacenada en el sistema, o como una medida del trabajo que un sistema puede entregar. Suele abreviarse con la letra \scriptstyle Uo \scriptstyle E_p.
Más rigurosamente, la energía potencial es una magnitud escalar asociada a un campo de fuerzas (o como en elasticidad un campo tensorial de tensiones). Cuando la energía potencial está asociada a un campo de fuerzas, la diferencia entre los valores del campo en dos puntos A y B es igual al trabajo realizado por la fuerza para cualquier recorrido entre B y A.

Energía cinética
http://bits.wikimedia.org/static-1.22wmf1/skins/common/images/magnify-clip.png
Los carros de una montaña rusa alcanzan su máxima energía cinética cuando están en el fondo de su trayectoria. Cuando comienzan a elevarse, la energía cinética comienza a ser convertida a energía potencial gravitacional, pero, si se asume una fricción insignificante y otros factores de retardo, la cantidad total de energía en el sistema sigue siendo constante.
En física, la energía cinética de un cuerpo es aquella energía que posee debido a su movimiento. Se define como el trabajo necesario para acelerar un cuerpo de una masa determinada desde el reposo hasta la velocidad indicada. Una vez conseguida esta energía durante la aceleración, el cuerpo mantiene su energía cinética salvo que cambie su velocidad. Para que el cuerpo regrese a su estado de reposo se requiere un trabajo negativo de la misma magnitud que su energía cinética. Suele abreviarse con letra Ec o Ek (a veces también T o K).

Introducción
El adjetivo «cinético» en el nombre energía viene de la antigua palabra griegaκίνησις, kinesis, que significa «movimiento». El término energía cinéticatrabajo y su significado científico provienen del siglo XIX. Los primeros conocimientos de esas ideas pueden ser atribuidos a GaspardGustaveCoriolis quien en 1829 publicó un artículo titulado Du Calcul de l'Effet des Machines esbozando las matemáticas de la energía cinética. El término energía cinética se debe a William Thomson más conocido como Lord Kelvin en 1849.
Existen varias formas de energía como la energía química, el calor, la radiación electromagnética, la energía nuclear, las energías gravitacional, eléctrica, elástica, etc, todas ellas pueden ser agrupadas en dos tipos: la energía potencial y la energía cinética.
La energía cinética puede ser entendida mejor con ejemplos que demuestren cómo ésta se transforma de otros tipos de energía y a otros tipos de energía. Por ejemplo un ciclista quiere usar la energía química que le proporcionó su comida para acelerar su bicicleta a una velocidad elegida. Su velocidad puede mantenerse sin mucho trabajo, excepto por la resistencia del aire y la fricción. La energía convertida en una energía de movimiento, conocida como energía cinética, pero el proceso no es completamente eficiente y el ciclista también produce calor.
La energía cinética en movimiento de la bicicleta y el ciclista pueden convertirse en otras formas. Por ejemplo, el ciclista puede encontrar una cuesta lo suficientemente alta para subir, así que debe cargar la bicicleta hasta la cima. La energía cinética hasta ahora usada se habrá convertido en energía potencial gravitatoria que puede liberarse lanzándose cuesta abajo por el otro lado de la colina. Alternativamente el ciclista puede conectar una dínamo a una de sus ruedas y así generar energía eléctrica en el descenso. La bicicleta podría estar viajando más despacio en el final de la colina porque mucha de esa energía ha sido desviada en hacer energía eléctrica. Otra posibilidad podría ser que el ciclista aplique sus frenos y en ese caso la energía cinética se estaría disipando a través de la fricción en energía calórica.
Como cualquier magnitud física que sea función de la velocidad, la energía cinética de un objeto no solo depende de la naturaleza interna de ese objeto, también depende de la relación entre el objeto y el observador (en física un observador es formalmente definido por una clase particular de sistema de coordenadas llamado sistema inercial de referencia). Magnitudes físicas como ésta son llamadas invariantes. La energía cinética esta co-localizada con el objeto y atribuido a ese campo gravitacional.
El cálculo de la energía cinética se realiza de diferentes formas según se use la mecánica clásica, la mecánica relativista o la mecánica cuántica. El modo correcto de calcular la energía cinética de un sistema depende de su tamaño, y la velocidad de las partículas que lo forman. Así, si el objeto se mueve a una velocidad mucho más baja que la velocidad de la luz, la mecánica clásica de Newton será suficiente para los cálculos; pero si la velocidad es cercana a la velocidad de la luz, la teoría de la relatividad empieza a mostrar diferencias significativas en el resultado y debería ser usada. Si el tamaño del objeto es más pequeño, es decir, de nivel subatómico, la mecánica cuántica es más apropiada.

No hay comentarios:

Publicar un comentario en la entrada